Y=-1.179(x^2-12x+36)+42

Simple and best practice solution for Y=-1.179(x^2-12x+36)+42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-1.179(x^2-12x+36)+42 equation:



=-1.179(Y^2-12Y+36)+42
We move all terms to the left:
-(-1.179(Y^2-12Y+36)+42)=0
We calculate terms in parentheses: -(-1.179(Y^2-12Y+36)+42), so:
-1.179(Y^2-12Y+36)+42
We multiply parentheses
-1.179Y^2+14.148Y-42.444+42
We add all the numbers together, and all the variables
-1.179Y^2+14.148Y-0.444
Back to the equation:
-(-1.179Y^2+14.148Y-0.444)
We get rid of parentheses
1.179Y^2-14.148Y+0.444=0
a = 1.179; b = -14.148; c = +0.444;
Δ = b2-4ac
Δ = -14.1482-4·1.179·0.444
Δ = 198.072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14.148)-\sqrt{198.072}}{2*1.179}=\frac{14.148-\sqrt{198.072}}{2.358} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14.148)+\sqrt{198.072}}{2*1.179}=\frac{14.148+\sqrt{198.072}}{2.358} $

See similar equations:

| 4x6=34 | | 16d-10d=18 | | Y-2=3x+21 | | Y=-0.5(x^2-12x+36)+18 | | 19w-16w=6 | | 2v+8v=10 | | 19=5+2(a+4) | | Y+6=2x+10 | | 7y+24=11y+48 | | 14t-99=3t | | H(t)=-6.5t^2+50t | | y/9=-56 | | 10s-36+2s+36=180 | | (n+8)=n+48 | | -9x=-28 | | 6w-89=5w-71 | | 2(x-6)+x=3(x-4) | | Y=4.81x+17.4 | | y+31=2y | | 18y=8 | | y+45=6y | | H(t)=-6.5t^2+60t | | z+11=2z | | 400•x4=433 | | 98=6x+14 | | |1+6c|-7=-3 | | -5x+6(4x+15)=242x=8-7x+7(-2x+25)=-564x+5(5x-39)=153x=126x-5(6x+39)=-75x=-5-6x+7(3x-6)=-177 | | 1=5-4q | | 13+x=169 | | 17=5s+2 | | -5x-20=x+29 | | 15x^2-56x+49=0 |

Equations solver categories